AGRICULTURAL AND FOOD CHEMISTRY

Investigation of Methylmercury and Total Mercury Contamination in Mollusk Samples Collected from Coastal Sites along the Chinese Bohai Sea

LI-NA LIANG, JIAN-BO SHI, BIN HE, GUI-BIN JIANG,* AND CHUN-GANG YUAN

Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 100085 Beijing, China

This paper presents the investigation results of methylmercury and total mercury in gastropod and bivalve species collected from eight coastal sites along the Chinese Bohai Sea. The total mercury was directly determined by atomic fluorescence spectrometry (AFS), while the methylmercury was measured by a laboratory established high performance liquid chromatography-atomic fluorescence spectrometry system (HPLC-AFS). Certified reference material DORM-2 (Dogfish muscle) was used to validate the two methods and the obtained results proved to be in good agreement with the certified values. It was demonstrated that the mercury contamination was commonly existed in all selected mollusks, with methylmercury and total mercury concentration in the range of 4.8–168.4 and 6.7–453.0 ng Hg g⁻¹, respectively. Mollusks from HuLuDao were the most mercury contaminated, and those from PengLai took the second place. The species-dependent bioaccumulation capacity was observed in this study. Gastropods showed more capacity to bioaccumulate mercury than bivalves, and mercury contents in two kinds of gastropods (*Rapana venosa* and *Neverita didyma*) presented some uplifted trends with the dimensions increasing of the gastropods. *Rapana venosa* was found to be a potential biomarker to monitor mercury pollution in oceans. Evaluations were also made concerning about the ratio of methylmercury to total mercury.

KEYWORDS: Methylmercury; total mercury; HPLC-AFS; mollusks

INTRODUCTION

Mercury is an important but toxic element. Both the direct drainage of industrial wastewater and rainwater runoff leads to mercury contamination in oceans. Mercury is first absorbed by phytoplankton and then by various consumers within the oceanic ecosystem. Mollusks lie in the second trophic level in this ecosystem and accumulate less methylmercury than predatory fish. However, mollusks are popular seafood, and long-term consumption of them may result in methylmercury accumulation in the human body.

The toxicity of mercury is well known since the notorious poisoning accident at Minamata Bay in southern Japan during the 1950s and 1960s. This tragic event was due to the consumption of methylmercury-contaminated fish, and 48 persons died. Acute exposure to methylmercury is lethal, and chronic low-dose consumption of methylmercury-contaminated fish can cause severe adverse effects to organs, the central nervous system, and the immune system. Consumption of mercury-contaminated fish is particularly hazardous for pregnant women because of its heredity effect on the unborn fetus. Its virulence effect cannot be eradicated for many years. Because methylmercury is the most toxic form of mercury, it is now more appropriate to determine not only the total mercury content of seafood but also the methylmercury content. Gas chromatography (GC) separation coupled with electron capture detection (ECD) proposed by Westöö (1) was the commonly used method for the determination of methylmercury. More recently, high performance liquid chromatography (HPLC) hyphenated with atomic fluorescence detector (AFS) has become popular (2-4).

In this present investigation, the contents of methylmercury and total mercury of 88 mollusks samples collected from eight coastal sites were analyzed. The methylmercury was determined with our previously proposed HPLC-AFS method (4), but the sample preparation was slightly modified in order to shorten the preparation time. The AFS method was adopted for the total mercury determination. It was found that the ratio of methylmercury to total mercury varied slightly between gastropods and bivalves, and *Rapana venosa* was found to be a potential biomarker to monitor the mercury pollution in ocean.

MATERIALS AND METHODS

Instrumentation. The HPLC (LC-10AT vp, Shimadzu, Japan) and AFS (AF-610A, Beijing Raileigh Analytical Instrument Co., China) hyphenation system was as described previously (4). The AFS peristaltic

^{*} Corresponding author. Fax: 8610-62849179. E-mail: gbjiang@ mail.rcees.ac.cn.

Figure 1. Sampling sites of mollusk samples along the Chinese Bohai Sea.

pump was substituted with a more competent peristaltic pump on the FIA-3100 analyzer (Beijing Wantuo Instrument Co., China), which was used to pump the $K_2S_2O_8$ oxidant solution and KBH₄ reducing agent. The total mercury determination was made with reference to the previous method (5).

Reagents and Standards. All chemicals were of guaranteed reagent grade except where specified, and Milli-Q water was used throughout. Stock solutions of standard methylmercury chloride (CH₃HgCl, Merck) and mercury chloride (HgCl₂, Merck) (1 mg ml⁻¹ as Hg) were prepared by dissolving appropriate amounts in methanol and 5% v/v HNO₃, respectively. The mercury working solutions were obtained by dilution with methanol or 10% v/v HNO₃ and prepared daily before use. All solutions were stored at 4 °C.

Aqueous solutions, 0.1 mol l^{-1} tetrabutylammonium bromide (TBA), 1 mol l^{-1} NaCl, 25% m/v KOH/CH₃OH, and 10 mmol l^{-1} Na₂S₂O₃ solution, were prepared weekly and stored at 4 °C. Daily prepared HPLC mobile phase was a mixture of appropriate TBA, NaCl solution, water, and CH₃OH and filtered through a 0.45- μ m membrane filter before use.

 KBH_4 solutions (0.01% m/v and 0.2% m/v) were prepared daily by dissolving the required amount in 0.2% m/v KOH. An oxidant solution of 1% m/v $K_2S_2O_8$ solution was prepared in 10% v/v HCl.

Sampling. Figure 1 shows the eight sampling sites of mollusks. These sites spread out around the Bohai Sea. Mollusks with different dimensions were divided into several size groups, and the dimensions and numbers of mollusks were listed in **Table 1** according to sampling sites and species. The soft tissues of mollusks were excised with stainless steel scalpel blades, thoroughly rinsed with Milli-Q water to remove extraneous impurities, and homogenized using a blender. The homogenized samples were kept at -18 °C until analysis.

Different species of mollusks were identified according to the catalog of marine mollusks in reference books (6).

Procedures. For methylmercury analysis, samples were prepared according to the published method with slight modification (7). Briefly, 2 mL of 25% m/v KOH/CH₃OH was added to 1.0-2.0-g homogenized wet samples in a 50-mL centrifuge tube and shaken mechanically overnight. Then 6 mL of CH₂Cl₂ was added, and 1.5 mL of concentrated HCl was dropped in sequence, followed by shaking for 10 minutes to extract organic mercury into the CH₂Cl₂ phase. After centrifuging at 2000 rpm for 10 min, the 4 mL of CH₂Cl₂ phase was transferred into

a 10-mL glass tube and extracted with 1 mL of sodium thiosulfate. Shaking for 45 min was needed to hasten the extraction speed. Another centrifugation at 5000 rpm, 4 °C for 15 min, was necessary to separate the fat layer. The water phase was injected directly into the HPLC-AFS system.

For total mercury analysis, approximately 1 g (wet weight) of soft tissues were directly weighed into a PTFE digestion container. Concentrated nitric acid (3 mL) was added, and the containers were sealed and left to predigest overnight on an electrothermal hotplate at 40 °C. After cooling, 2 mL of hydrogen peroxide was added into the containers, which were placed in stainless steel bombs, sealed with a screw closure to avoid any acid leakage, and placed in an oven. The oven temperature was first raised to 50 °C and kept for 1 h, then increased to 160 °C for another 4 h. After cooling to room temperature, the solutions were completely transferred into a 50-mL PET bottle and diluted with Milli-Q water, then determined by AFS method. Reagent blanks were processed simultaneously.

RESULTS AND DISCUSION

Evaluation of the Methods. Certified reference material DORM-2 (Dogfish muscle) was analyzed to validate the two analytical methods. As shown in **Table 2**, the experimental results were in good agreement with the certified values.

Mercury Contents in Mollusks. Contents of methylmercury and total mercury and the ratio of methylmercury to total mercury in gastropods and bivalves at each sampling site are shown in **Tables 3** and **4**, respectively. Mercury was detected in all samples. Methylmercury levels ranged from 4.8 to 168.4 ng Hg g⁻¹, while total mercury contents ranged from 6.7 to 453.0 ng Hg g⁻¹. It was found that mollusks collected from different places contained different levels of methylmercury and total mercury. Roughly, samples collected from HuLuDao contained the highest level, those from PengLai took the second place, and those from the other six sampling sites contained the lowest level. On the basis of the analysis of **Tables 3** and **4**, gastropods showed higher bioaccumulation capacity for mercury than bivalves.

Methylmercury in Mollusks. Methylmercury contents in bivalves varied from 4.8 to 47.5 ng Hg g^{-1} . The methylmercury and total mercury contents in bivalves at the eight sampling sites are given in Table 4. Methylmercury levels in bivalves from HuLuDao and PengLai were similar and higher than those from the other sites. As for gastropods, the methylmercury contents were 4.9-168.4 ng Hg g⁻¹, which was similar to those in bivalves. From Table 3, it was obvious that gastropods from HuLuDao contained the highest levels of methylmercury, while methylmercury contents in those from other sites differed slightly. For all the three-size group of Rapana venosa from HuLuDao, the methylmercury levels ranged from 40.9 to 168.4 ng g^{-1} , and the large *Rapana venosa* contained methylmercury content exceeding the maximum permissible levels (MPLs) of 0.16 mg kg^{-1} wet weight, which was established by the Ministry of Health of the State of Minnesota (USA). Comparing with the similar dimensions of *Rapana venosa* in other sampling sites, those from HuLuDao were the most seriously polluted.

Total Mercury in Mollusks. Total mercury contents in bivalves varied from 6.7 to 194.2 ng Hg g⁻¹. According to **Table 4**, the total mercury contamination levels of bivalves from HuLuDao and PengLai were similar and higher than those from the other sites. Considering the maximum permissible levels (MPLs) of total mercury in fish and shellfish set up by China (0.3 mg kg⁻¹), Europe (EEC decision 93/351, 0.5 mg kg⁻¹), and WHO (0.5 mg kg⁻¹), all the bivalves could be eaten with no worry about the hazards to human health. *Mytilus edulis* had medium mercury contents, but the one from PengLai showed extraor-

 Table 1. Dimension and Number for Three Size Classes (S-small, M-middle, L-large) of the Mollusks in Eight Sampling Sites: Bivalves (length) and Gastropods (height)

species	denomination	dimension (mm)	NO.
WeiHai	Panana venosa Valenciennes 1946	05 + 1	2
gasiropous	Neverita didyma, Röding, 1798	41±3	5
bivalves	Ruditapes philippinarum, Adams & Reeve, 1850	34 ± 2	22
	Meretix meretrix, Linnaeus, 1758	54 ± 2	7
	Sinonovacula constricta, Lamarck, 1818 Amusium, Röding, 1798	57 ± 2 80 + 6	14
	Chlamys (Azumapecten) farreri, Jones & Preston, 1904	50 ± 0 51 ± 4	8
	Crassostrea talienwhanensis, Crosse, 1862	64 ± 11	4
	Mytilus edulis, Linnaeus, 1758	58 ± 4	12
Develo	mya alenana, Linnaeus, 1758	$C \pm 00$	3
PengLai gastropods	Nentunea arthritica cumingii. Crosse, 1862	87 + 3	1
gasiropous	Rapana venosa, Valenciennes, 1846(L)	95 ± 0	2
	Rapana venosa, Valenciennes, 1846(S)	57 ± 2	7
	Neverita didyma, Röding, 1798(L)	46 ± 4	2
hivalves	Neverita didyma, Roding, 1798(5) Mactra (Mactra) veneriformis, Reeve, 1854	21 ± 1 35 + 1	12 14
bivalives	Ruditapes philippinarum, Adams & Reeve, 1850	33 ± 2	20
	Meretix meretrix, Linnaeus, 1758	77 ± 1	7
	Scapharca subcrenata, Lischke, 1869	33 ± 2	15
	Amusium, Roding, 1798 Chlamys (Azumanecten) farreri Jones & Preston 1904	106 ± 2 51 + 4	2 13
	Crassostrea talienwhanensis, Crosse, 1862	49 ± 4	6
	Mytilus edulis, Linnaeus, 1758	59 ± 5	8
	Mya arenaria, Linnaeus, 1758	74 ± 1	3
YangKou	Danana vanaga Valansiannas 104/	0/ + /	0
gastropods	Rapana venosa, valenciennes, 1846 Neverita diduma Röding 1798(L)	96±6 31+0	2 11
	Neverita didyma, Röding, 1790(E)	18 ± 1	23
bivalves	Mactra (Mactra) veneriformis, Reeve, 1854	32 ± 3	12
	Ruditapes philippinarum, Adams & Reeve, 1850	43 ± 4	9
	Meretix meretrix, Linnaeus, 1758 Sinonovacula constricta Lamarck, 1818	50 ± 3 54 ± 2	10 11
	Scapharca subcrenata, Lischke, 1869(L)	54 ± 2 54 ± 6	3
	Scapharca subcrenata, Lischke, 1869(S)	35 ± 2	6
TangGu			
gastropods	Rapana venosa, Valenciennes, 1846(L)	119	1
	Rapana venosa, Valenciennes, 1846(M) Panana venosa, Valenciennes, 1846(S)	68 ± 4	3
	Neverita didyma. Röding. 1798(L)	40 ± 4 26 ± 2	12
	Neverita didyma, Röding, 1798(S)	16 ± 2	43
bivalves	Mactra (Mactra) veneriformis, Reeve, 1854	30 ± 2	27
	Mereux mereurix, Linnaeus, 1758 Sinonovacula constricta Lamarck, 1818	42 ± 3 55 + 2	10 17
	Scapharca subcrenata, Lischke, 1869	49 ± 2	7
	Amusium, Röding, 1798	108 ± 1	2
	Crassostrea talienwhanensis, Crosse, 1862	63 ± 4	5
	iviya arenaria, Linnaeus, 1758(L) Mya arenaria, Linnaeus, 1758(S)	100 ± 5 68 + 2	3 4
OinHuangDao		VV - L	
gastropods	Rapana venosa, Valenciennes, 1846(L)	81 ± 2	3
	Rapana venosa, Valenciennes, 1846(S)	54 ± 3	5
hivaluos	Neverita didyma, Röding, 1798	45 ± 1	4
Divalves	iviacula (iviacula) veneniormis, Reeve, 1854 Ruditapes philippinarum Adams & Reeve, 1850	32 ± 2 28 + 2	18 63
	Meretix meretrix, Linnaeus, 1758	55 ± 3	7
	Sinonovacula constricta, Lamarck, 1818	57 ± 2	14
	Scapharca subcrenata, Lischke, 1869	49 ± 1	4
	Amusium, Rouing, 1798 Chlamys (Azumanecten) farreri Jones & Preston 1904	40 ± 2 68 + 3	וא 7
	Crassostrea talienwhanensis, Crosse, 1862	49±2	7
	Mytilus edulis, Linnaeus, 1758	68 ± 5	16
HuLuDao			
gastropods	Rapana venosa, Valenciennes, 1846(L)	84 ± 5	2
	Rapana venosa, Valenciennes, 1846(M) Rapana venosa, Valenciennes, 1846(S)	66 ± 2	4 11
	Neverita didyma, Röding, 1798(L)	44 ± 2 56 ± 1	3
	Neverita didyma, Röding, 1798(M)	38 ± 4	4
h la shara a	Neverita didyma, Röding, 1798(S)	24 ± 2	8
Divalves	IVIACTRA (IVIACTRA) VENERIFORMIS, KEEVE, 1854 Ruditanes philippinarum Adams & Reeve, 1850	34 ± 2 32 ± 2	18
	Meretix meretrix, Linnaeus, 1758	52 ± 2 59 ± 2	5
	Scapharca subcrenata, Lischke, 1869	40 ± 5	5

species	denomination	dimension (mm)	no.
YingKou gastropods bivalves	Rapana venosa, Valenciennes, 1846 Mactra (Mactra) veneriformis, Reeve, 1854 Ruditapes philippinarum, Adams & Reeve, 1850 Meretix meretrix, Linnaeus, 1758 Sinonovacula constricta, Lamarck, 1818 Amusium, Röding, 1798 <i>Mulilus edulis</i> . Linnaeus, 1758	$69 \pm 5 \\ 30 \pm 2 \\ 37 \pm 2 \\ 52 \pm 3 \\ 48 \pm 2 \\ 68 \pm 3 \\ 71 \pm 7 \\ $	4 22 18 7 33 5 6
DaLian gastropods bivalves	Neptunea arthritica cumingii, Crosse, 1862(L) Neptunea arthritica cumingii, Crosse, 1862(M) Neptunea arthritica cumingii, Crosse, 1862(S) Neverita didyma, Röding, 1798 Mactra (Mactra) veneriformis, Reeve, 1854 Ruditapes philippinarum, Adams & Reeve, 1850 Meretix meretrix, Linnaeus, 1758 Sinonovacula constricta, Lamarck, 1818 Scapharca subcrenata, Lischke, 1869 Amusium, Röding, 1798 Chlamys (Azumapecten) farreri, Jones & Preston, 1904 Crassostrea talienwhanensis, Crosse, 1862 <i>Mytilus edulis</i> , Linnaeus, 1758	122 ± 1 70 ± 0 42 ± 3 38 ± 2 32 ± 1 30 ± 3 50 ± 3 52 ± 2 34 ± 2 72 ± 5 50 ± 4 59 ± 7 61 ± 5	2 5 14 10 12 46 9 29 16 5 11 6 21

 Table 2. Results of Methylmercury (MeHg) and Total Mercury (HgT)

 Contents in DORM-2 (Dogfish Muscle)

sample	determination values (mean ^a \pm S. D. ^b , ng g ⁻¹)	certified values (mean ^a \pm S. D. ^b , ng g ⁻¹)
MeHg concentration	4237 ± 143	4470 ± 320
$(\text{mean}^a \pm \text{S. D.}^b, \text{ ng g}^{-1})^c$ HgT concentration $(\text{mean}^a \pm \text{S. D.}^b, \text{ ng g}^{-1})^d$	4560 ± 460	4640 ± 260

 $^{a}N = 3$. b Standard deviation. c Determined by HPLC-AFS. d Determined by AFS.

dinarily high mercury content. It was supposed that this sample was collected from an extremely mercury-polluted place, and this was also supported by the more severe contamination statues in bivalves from PengLai. As for gastropods, the total mercury contents ranged from 11.3 to 453.0 ng Hg g⁻¹. **Table 3** indicates that mercury contamination level in gastropods from HuLuDao was at least twice that of those from PengLai and other sites. Among the 88 samples, only large *Rapana venosa* in HuLuDao contained high levels of total mercury that went beyond the MPLs set up by China. However, much attention should be paid when consuming a large amount of this species of seafood in a short period. When the total mercury contents in bivalves and gastropods were compared, it was easy to find the great difference between them, which just illuminated the distinct mercury bioaccumulation capacity of them. Maybe this is because the bivalves are grass-eating mollusks, while the three collected gastropod species are all predatory flesh-eating mollusks, the main food of which are bivalves. So from the view of trophic

Table 3. Methylmercury (MeHg), Total Mercury (HgT), and the MeHg/HgT Ratio in Gastropods Collected from Eight Coastal Cities in China (Wet Weight, ng g^{-1})

sites	denomination	MeHg	HgT	MeHg/HgT (%)
WeiHai	WeiHai Rapana venosa, Valenciennes, 1846		42.4	44
	Neverita didyma, Röding, 1798	14.1	33.0	43
PengLai	Neptunea arthritica cumingii, Crosse, 1862	27.6	94.1	29
0	Rapana venosa, Valenciennes, 1846(L)	19.1	97.9	19
	Rapana venosa, Valenciennes, 1846(S)	18.1	63.0	29
	Neverita didyma, Röding, 1798(L)	44.2	138.7	32
	Neverita didyma, Röding, 1798(S)	38.5	62.2	62
YangKou	Rapana venosa, Valenciennes, 1846	18.8	59.1	32
5	Neverita didyma, Röding, 1798(L)	23.2	96.1	24
	Neverita didyma, Röding, 1798(S)	16.1	32.0	50
TangGu	Rapana venosa, Valenciennes, 1846(L)	14.9	37.8	40
5	Rapana venosa, Valenciennes, 1846(M)	10.5	24.0	44
	Rapana venosa, Valenciennes, 1846(S)	4.9	11.3	44
	Neverita didyma, Röding, 1798(L)	10.4	26.6	39
	Neverita didyma, Röding, 1798(S)	13.0	42.7	30
QinHuangDao	Rapana venosa, Valenciennes, 1846(L)	13.8	41.7	33
0	Rapana venosa, Valenciennes, 1846(S)	16.1	53.4	30
	Neverita didyma, Röding, 1798	17.8	44.0	40
HuLuDao	Rapana venosa, Valenciennes, 1846(L)	168.4	453.0	37
	Rapana venosa, Valenciennes, 1846(M)	55.9	276.7	20
	Rapana venosa, Valenciennes, 1846(S)	40.9	199.2	21
	Neverita didyma, Röding, 1798(L)	49.9	128.0	39
	Neverita didyma, Röding, 1798(M)	34.3	77.2	44
	Neverita didyma, Röding, 1798(S)	29.7	53.1	56
YingKou	Rapana venosa, Valenciennes, 1846	24.4	60.5	40
DaĽian	Neptunea arthritica cumingii, Crosse, 1862(L)	25.2	109.5	23
	Neptunea arthritica cumingii, Crosse, 1862(M)	17.5	67.2	26
	Neptunea arthritica cumingii, Crosse, 1862(S)	20.2	83.3	24
	Neverita didyma, Röding, 1798	14.2	39.3	36

Table 4.	Methylmercury ((MeHg),	Total Mercury	(HgT), a	and the	MeHg/HgT	Ratio in	Bivalves	Collected from	i Eight	Coastal	Cities i	n China	(Wet
Weight, I	ng g ⁻¹)													

sites	denomination	MeHg	HgT	MeHg/HgT (%)
WeiHai	Ruditapes philippinarum, Adams & Reeve, 1850	8.4	14.8	57
	Meretix meretrix, Linnaeus, 1758	8.0	9.1	87
	Sinonovacula constricta. Lamarck. 1818	7.3	10.4	70
	Amusium Röding 1798	13.9	20.2	69
	Chlamys (Azumanecten) farreri Jones & Preston 1904	11.6	17.1	68
	Crassostrea talienwhanensis Crosse 1862	8.2	15.7	52
	Mutilus adulis Linnaeus 1758	0.2 0.0	11.7	81
	Mya aronaria Linnacus, 1758	12.0	10.1	76
Donal ai	Mactra (Mactra) veneriformis Deeve 1854	15.6	10.1	80
r englai	Duditanos philippiparum Adams & Doovo 1950	13.0	26.0	70
	Morativ moratrix Linnaaus, 1759	21.3 47 E	20.9	79
	Scapharca cuberonata Lischka 1940	47.0 24 E	9Z. I 44 1	52
	Amusium Döding 1709	20.0	44.1	71
	Allusiulli, Roully, 1790 Chlamus (Azumanastan) farrari, Janas & Drastan, 1004	10.0	23.3	/ 1
	Childrifys (Azumapecieri) larteri, Jones & Presion, 1904	22.8	34.0	07
	Mutilus adulis Linnesus 1750	37.0	04.4	38
	Mythus edulis, Linnaeus, 1758	40.0	194.2	21
N/ 1/	Mya arenaria, Linnaeus, 1758	16.6	24.4	68
YangKou	Mactra (Mactra) veneriformis, Reeve, 1854	12.3	20.7	59
	Ruditapes philippinarum, Adams & Reeve, 1850	12.5	32.5	38
	Meretix meretrix, Linnaeus, 1758	10.4	16.1	65
	Sinonovacula constricta, Lamarck, 1818	8.4	10.7	79
	Scapharca subcrenata, Lischke, 1869(L)	18.0	45.4	40
	Scapharca subcrenata, Lischke, 1869(S)	27.7	68.4	41
TangGu	Mactra (Mactra) veneriformis, Reeve, 1854	5.6	7.8	72
	Meretix meretrix, Linnaeus, 1758	4.8	6.7	72
	Sinonovacula constricta, Lamarck, 1818	8.7	9.8	89
	Scapharca subcrenata, Lischke, 1869	10.4	16.4	63
	Amusium, Röding, 1798	10.8	22.4	48
	Crassostrea talienwhanensis, Crosse, 1862	11.7	15.6	75
	Mya arenaria, Linnaeus, 1758(L)	11.6	16.1	72
	Mya arenaria, Linnaeus, 1758(S)	21.8	51.3	42
QinHuangDao	Mactra (Mactra) veneriformis, Reeve, 1854	13.0	16.9	77
·	Ruditapes philippinarum, Adams & Reeve, 1850	13.9	18.6	75
	Meretix meretrix, Linnaeus, 1758	7.5	12.6	59
	Sinonovacula constricta, Lamarck, 1818	14.4	19.6	74
	Scapharca subcrenata, Lischke, 1869	11.2	13.9	81
	Amusium, Röding, 1798	9.7	13.4	73
	Chlamys (Azumapecten) farreri, Jones & Preston, 1904	14.5	19.7	74
	Crassostrea talienwhanensis. Crosse, 1862	14.8	18.1	82
	Mytilus edulis. Linnaeus, 1758	8.9	11.0	80
Hul uDao	Mactra (Mactra) veneriformis Reeve 1854	25.2	77.8	32
The Lab do	Ruditanes philippinarum Adams & Reeve 1850	24.4	38.2	64
	Meretix meretrix Linnaeus 1758	15.8	19.9	80
	Scanharca subcrenata Lischke 1869	38.4	99.3	39
VingKou	Mactra (Mactra) veneriformis Reeve 1854	18.7	43.2	43
Tillgitou	Puditanes nhilinninarum Adams & Reeve, 1850	15.7	27.8	56
	Morativ maratrix Linnaaus 1758	8.6	15.0	50
	Sinonovacula constricta Lamarck 1818	23.6	28.4	83
	Amusium Döding 1709	10.0	20.4	60
	Mutilus adulis Lippacus 1759	10.0	27.3	67
Dalian	Mastra (Mastra) vonoriformia Doovo 1954	17.0	27.4	07
Dallall	Duditance philippiparum Adame & Decue 1950	12.0	30.4 11 1	41
	Nuullapes philippinalum, Auams & Reeve, 1830	0.4	11.1 2E 1	00 47
	Niciellix IIIciellix, Liiildeus, 1/30 Sinonovoculo constricto Lemeral: 1010	10.0 1F 4	20.1 24.7	U/ ()
	Sinonovacuia constricta, Lamarck, 1818	10.0	24.7	03
	Scapnarca subcrenala, LISCNKE, 1869	14.4	20.2	55
	Amusium, Roding, 1798	15.3	28.2	54
	Chiamys (Azumapecten) tarreri, Jones & Preston, 1904	17.1	30.5	56
	Crassostrea tallenwhanensis, Crosse, 1862	13.0	24.1	54
	iviytilus edulis, Linnaeus, 1758	17.1	30.9	55

levels, the gastropods are superior to bivalves and can bioaccumulate mercury effectively.

Combining with the above-mentioned comparison of methylmercury and total mercury content in mollusks from the eight sampling sites, we could easily find the serious mercury contamination levels in mollusks from HuLuDao. In HuLuDao city, the biggest zinc plant in Asia, built in the 1930s', continually pours wastewater and waste residue containing heavy metals into the Bohai Sea. It causes the excess Hg, Zn, Cu, Cd, and Pb deposition in the sediments and halobios. Furthermore, the wastewater from the oil refining plant, chemical plant, and petrochemical industry in JinXi city, on the west of HuLuDao city, contribute to the mercury pollution in the mollusks. The wastewater flows through the WuLi River and finally pours into the Bohai Sea. It was reported that, from the entrance of the WuLi River to the Bohai Sea, the deposited mercury had reached 90 tons. Many halobios have been killed out, and the living halobios cannot be eaten any more. As for PengLai, the mercury pollution in mollusks attribute to the paper mill and the gold mines in the adjacent area. Wastewater from the paper mill is dumped into the Bohai Sea with no disposal. Also, the private industrial owners extract gold by the gold mercury amalgam method, which causes the local mercury pollution in rivers and soils, and all the mercury converges to the Bohai Sea at last.

Bioaccumulation of Mercury in Mollusks. Three species of gastropods and two species of bivalves were collected with different sizes. According to the different dimensions in each sampling site, the three gastropods were roughly divided into three-size classes (i.e., the L (large), M (middle), and S (small) classes). Two bivalve samples, Scapharca subcrenata and Mya arenaria, were divided into L (large) and S (small) size classes. The results listed in Table 3 showed that mercury bioaccumulation in different sizes of gastropods differed evidently. Mercury in Rapana venosa showed uplifted trends with the increasing of the shells' size. Rapana venosa from three sites presented the elevated Hg content, especially in the more severely contaminated samples collected from HuLuDao. However, Rapana venosa from QinHuangDao did not agree with this trend, probably because the growth dilution effect played an important role. Neverita didyma also showed similar variability to Rapana venosa. Three dimensions of Neptunea arthritica cumingii were only collected in DaLian and the accretion trend was not very clear. Other than Rapana venosa and Neverita didyma, Scapharca subcrenata and Mya arenaria did not show the uplifted trends. However, this conclusion was unilateral for lacking of sufficient data. The highest mercury level and the infinite bioaccumulation in the Rapana venosa soft tissue might indicate that it is a potential biomarker to monitor the mercury pollution in oceanic ecosystems.

The Ratio of Methylmercury to Total Mercury. The proportions of methylmercury to total mercury in bivalves ranged from 20.9 to 89.3%, which was in accord with the previous reports. Claisse et al. reported a methylmercury/total mercury ratio from 21 to 74% in mussels and oysters along the French Coast (8). Mikac et al. reported a methylmercury/total mercury ratio of about 40% in mussels from the Krka Estuary (Croatia) (9) in 1996. While for gastropod species, the ratio of methylmercury to total mercury was in the range of 19.5 to 62.0%. However, no literature has reported the ratio of methylmercury to total mercury in gastropods. This ratio in gastropods was lower than that in bivalves, according to our results. The different proportions of methylmercury to total mercury in bivalves and gastropods may correlate with their different absorption mechanism and metabolism. Gastropods accumulated more mercury than bivalves, and to protect themselves from hazards, there might be an automatic biotransformation process, in which methylmercury was converted into less toxic inorganic forms (10 - 11).

The different ratios among different sampling sites might correspond to the local methylation conditions in seawaters and sediments, such as temperature, salinity, pH, content of organic matters, numbers, and species of bacteria, which might lead to the different conversion percentage from inorganic mercury to methylmercury.

The contamination levels of methylmercury and total mercury in 13 species of mollusks and gastropods sampled from eight coastal sites along the Bohai Sea were investigated. Mercury were detected in all samples, and gastropods showed more capacity to bioaccumulate mercury than bivalves. The results also indicated that mercury contents in two gastropods presented uplifted trends with the increasing of the shells' dimensions. Due to the Hg drainage from the chemical industries in the adjacent area, mollusks collected from HuLuDao were obviously the most severely polluted samples. Comparing with the Hg contents in *Rapana venosa* in seven sampling sites, we found that *Rapana venosa* could not regulate Hg contents in its body and might be used as a potential biomarker to monitor Hg pollution in oceans.

ACKNOWLEDGMENT

We acknowledge Professor F. C. Adams for his kindly offering CRM DORM-2.

LITERATURE CITED

- Westöö, G. Determination of methylmercury compounds in foods. I. Methylmercury compounds in fish; identification and determination. *Acta Chem. Scand.* **1966**, 20 (8), 2131–2137.
- (2) Hintelmann, H.; Wilken, R. D. The analysis of organic mercury compounds using liquid chromatography with on-line atomic fluorescence spectrometric detection. *Appl. Organomet. Chem.* **1993**, 7 (3), 173–180.
- (3) Ramalhosa, E.; Río Segade, S.; Pereira, E.; Vale, C.; Duarte, A. Simple methodology for methylmercury and inorganic mercury determinations by high-performance liquid chromatography-cold vapour atomic fluorescence spectrometry. *Anal. Chim. Acta* 2001, 448, 135–143.
- (4) Liang, L. N.; Jiang, G. B.; Liu, J. F.; Hu, J. T. Speciation analysis of mercury in seafood by using high-performance liquid chromatography on-line coupled with cold-vapor atomic fluorescence spectrometry via a postcolumn microwave digestion. *Anal. Chim. Acta* 2003, 477 (1), 131–137.
- (5) Liang, L. N.; Jiang, G. B.; Hu, J. T. Determination of inorganic mercury and total organomercury in chemical wastewater by cold vapor generation-atomic fluorescence spectrometry. *Chin. J. Anal. Chem.* 2001, 29 (4), 403–405.
- (6) Qi, Z. Y.; Ma, X. T.; Wang, Z. R.; et al. *Mollusca of Huanghai* and Bohai; Agriculture Publishing House: Beijing, China, 1989.
- (7) Liang, L.; Horvat, M.; Cernichiari, E.; Gelein, B.; Balogh, S. Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation-gas chromatographycold vapor atomic fluorescence spectrometry. *Talanta* **1996**, *43* (11), 1883–1888.
- (8) Claisse, D.; Cossa, D.; Bretaudeausanjuan, J.; Touchard, G.; Bombled, B. Methylmercury in mollusks along the French coast. *Mar. Pollut. Bull.* 2001, *42* (4), 329–332.
- (9) Mikac, N.; Kwokal, Z.; Martincic, D.; Branica, M. Uptake of mercury species by transplanted mussels *Mytilus galloprovincialis* under estuarine conditions Krka River estuary. *Sci. Total Environ.* **1996**, *184*, 173–182.
- (10) Nigro, M. Mercury and selenium localization in macrophages of the striped dolphin, *Stenella coeruleoalba. J. Mar. Bio. Assoc.* 1994, UK 74, 975–978.
- (11) Nigro, M.; Leonzio, C. Intracellular storage of mercury and selenium in different marine vertebrates. *Mar. Ecol. Prog. Ser.* **1996**, *135*, 137–143.

Received for review February 27, 2003. Revised manuscript received September 25, 2003. Accepted September 30, 2003. This work was jointly supported by National Natural Science Foundation of China-(20137010, 20205008) and Chinese Academy of Sciences (KZCX2-414).

JF034199L